
appendix models
» A year here and still he dreamed of cyberspace,
 hope fading nightly. All the speed he took, all the turns he'd taken

 and the corners he'd cut in Night City, and still he'd see the matrix in his sleep,
 bright lattices of logic unfolding across that colorless void... «1

Appendix: Polymerization Models

Synopsis: This appendix discusses several approaches in the modeling of living

radical polymerizations with their specific advantages and disadvantages. 

A.1. Numerical Integration of Differential Equations

The reaction scheme of free radical polymerization, living or not, presented in

chapter 2 shows that only a relatively small number of different species take part in

these reactions: initiator, monomer, transfer agent, radicals, dormant polymer

chains and dead polymer material. The latter three types, however, are polymeric

species which means that they come in a variety of chainlengths. The way in which

the chain length is dealt with constitutes the primary difference between the models

described in this appendix. Three approaches can be distinguised.

First, the chainlengths can be completely ignored. Although simulations using

such models will not yield any information on the polymer as such, they may be

used to illustrate simple kinetic effects as in chapter 2, where it was shown that an

additional reaction needs to be invoked to explain the retardation that is observed in

RAFT polymerizations. The advantage of such a model is that it is both simple and

executes very fast. The number of differential equations can range from about five

to ten, depending on how detailed different termination and transfer events are

treated. The most important disadvantage is of course that no information is gained

on the polymer, other than its concentration (in moles per unit volume).

Second, all chainlengths can be considered individually. This means that for

each of the polymeric species (radicals, dormant chains and dead polymer), a large

number of differential equations needs to be solved. One for each individual chain-

length that exists during the polymerization. The advantage is that the most

complete picture of the resulting polymer is obtained. Full molar mass distributions
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can be constructed from the data and within these it is possible to locate the dead

and dormant materials. The disadvantage is that this approach may be applied only

to a limited number of polymerizations. The number of differential equations is

about three times larger than the number of chain lengths that is monitored during

the polymerization. Uncontrolled free radical polymerizations grow chains of a few

thousand repeat units from the start of the reaction resulting in simulations that

require far more than 10,000 differential equations to be solved simultaniously.

More often than not, these differential equations form a stiff system which rapidly

becomes insolvable for any computer as the number of differential equations

increases. Conventional free radical polymerizations therefore, cannot be simulated

with such an approach on common computers. The situation is completely different

for living free radical polymerizations. As outlined in chapter 2 the average chain

length is a linear function of conversion and its distribution is of low polydispersity.

This means if a reaction is set to produce material of say 150 monomer units, that

during the entire reaction no material is formed which would significantly exceed

this length. To accomodate material formed by combination – which may be

slightly longer – and provide a bit of overhead for the non-monodispersity of the

distribution, somewhat more than 450 differential equations are required and the

simulation can be executed on a modern desktop computer in a timespan anywhere

between a few minutes to a day. The simulations remain restricted however to living

systems with a fast equilibrium between growing and dormant chains that aim at

producing relatively low molar mass material. In this thesis, such a model is used to

investigate the kinetics by matching simulations to molar mass distributions

obtained by HPLC that show individual oligomers up to a chain length of about 15

monomer units.

A third method forms a compromise between the abovementioned simulations.

It relies on the fact that any distribution can be characterized by a number of

moments. The ith moment of the distribution of X (µi
X) is defined as follows:

in which Xj is the concentration of species X with degree of polymerization i.

The more moments are known, the more accurately a distribution can be recon-

structed from these values. The zeroth moment corresponds to the total concentra-

tion of a certain species, covering all chain lengths. Higher moments take more

(7-1)µi
X

ji Xj⋅
j 0=

∞

∑=
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abstract forms but they do allow experimentally accessible and physically important

polymer characteristics like number average molar mass, weight average molar

mass and polydispersity index to be calculated. The number average molar mass

(Mn) is defined as follows:

where xi is the mole fraction of molecules having degree of polymerization i. The

equation can also be expressed in numbers of molecules ni or alternatively in con-

centrations. The molar mass of a polymer chain can be replaced by the degree of

polymerization (i) times the molar mass of the monomer which allows the number

average molar mass to be expressed by the ratio of the first over the zeroth moment

of the polymer chain distribution times the mass of a single monomer unit

( ).

In an analogue derivation it can be shown that the weight average molar mass

(Mw) is equal to the ratio of the second moment over the first moment of the distri-

bution, again multiplied by the mass of the repeat unit:

The polydispersity index can then be calculated from the ratio of Mw over Mn.

More complex molar mass averages as Mz and Mz+1 are derived from the

higher moments of a distribution in a similar way. For each of the moments of a dis-

tribution, a differential equation is required. The approach taken in this thesis is

restricted to the first three moments. This results in a model with approximately

fifteen differential equations which can readily be solved by ordinary desktop work-

stations. The derivation of the differential equations is however slightly more com-

plicated then for the previous modelling approaches where, albeit the large number

of differential equations, their structure was very straightforward.

The models result in a set of differential equations which is solved numerically

using MATLAB, a widely used environment for scientfic computing.2 MATLAB

contains several different solvers for ordinary differential equations. For all models

(7-2)

(7-3)

Mn xi Mi⋅∑

ni Mi⋅∑

ni∑
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X

----------------------------= = =

FWmon

Mw wi Mi⋅∑

ni Mi
2⋅∑

ni Mi⋅∑
-----------------------

FWmon µ2
X⋅

µ1
X

----------------------------= = =
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derived in this appendix, ode15s was used, which is a quasi-constant step size

integrator. It implements numerical differentiation formulas (NDFs) which can be

considered an improvement over the more commonly used backward differentiation

formulas (BDFs, also known as Gear’s method) in terms of stability, speed and effi-

ciency.3 The transparent implementation adapts the stepsize of the integration

(through time) and the order of the fit to remain within the error margins given by

the user. The differential equations can either be hard-coded or constructed progra-

matically.

A.2.  Models

A.2.1. Model withouth Chain Lengths

Construction

A simple model that does not consider any chainlengths is easily derived from

the reaction schemes in section 2.3 (Schemes 2.11 and 2.12) which shows how

species are generated and how they are destroyed or transformed.

(7-4)

(7-5)

(7-6)

(7-7)

(7-8)

(7-9)

dI

dt
----- kd– I⋅=

dM

dt
-------- kp– M P⋅ ⋅ ki M R⋅ ⋅–=

dR

dt
------- 2 f kd I⋅ ki R M⋅ ⋅– kfrag R, PSR RSR+( )⋅ kadd R, SR SP+( )⋅

kt R R P RSR PSR PSP+ + + +( )⋅ ⋅–

–+=

dP

dt
------- ki R M⋅ ⋅ kt P R P RSR PSR PSP+ + + +( )⋅ ⋅

kadd P, P SR SP+( )⋅ ⋅– kfrag P, P PSP PSR+( )⋅ ⋅+

–=

dSR

dt
---------- kfrag P, PSR⋅ kfrag R, RSR⋅ kadd R, R SR⋅ ⋅ kadd P, P SR⋅ ⋅––+=

dSP

dt
---------- kfrag P, PSP⋅ kfrag R, PSR⋅ kadd R, R SP⋅ ⋅ kadd P, P SP⋅ ⋅––+=
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The model as presented here utilizes a single termination rate constant, but the

actual computer files allow one to distinguish intermediate radical termination from

the other termination events. 

Implementation

Equations 7-4 to 7-13 can be rewritten in a form that is desired by the MATLAB

solver. It can integrate ordinary differential equations if they are offered in the

following form:

in which t is a scalar independent variable, in this case time; y is a vector of

dependent variables; y’ is a function of t and y returning a column vector the same

length as y. In this case y could be the vector [I, M, P, T, S, D] and y’ the vector con-

taining the elements on the right hand side of the differential equations 7-4 to 7-13.

Besides these two vectors a third one is required which indicates the starting condi-

tions y0 = [I0, M0, 0, T0, 0, 0] and last, the options for the integrator need to be set.

These typically dictate the time interval for integration and the absolute and relative

error margins. Furthermore, optionally user defined conditions may be constructed

(so-called events) that prematurely stop the integration. In all the models in this

chapter, events were created that stopped integration when either monomer or

initiator had reached conversions higher than 99.999% and when the concentration

of any species would drop below zero. Further integration beyond this point would

(7-10)

(7-11)

(7-12)

(7-13)

(7-14)

dD

dt
------- kt R R P PSP PSR RSR+ + + +( )⋅ ⋅

kt P P RSR PSR PSP+ + +( )⋅ ⋅+

=

dRSR

dt
-------------- kadd R, R SR⋅ ⋅ kfrag R, RSR⋅ kt RSR R P+( )⋅ ⋅––=

dPSR

dt
-------------- kadd R, R SP⋅ ⋅ kadd P, P SR⋅ ⋅ kfrag R, PSR⋅

kfrag P, PSR⋅– kt PSR R P+( )⋅ ⋅–

–+=

dPSP

dt
-------------- kadd P, P SP⋅ ⋅ kfrag P, PSP⋅ kt PSP R P+( )⋅ ⋅––=

y' F t y,( )=
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not result in additional meaningful results but stretched the required integration

time considerably. Shown below are the contents of the two basic .m files required

to run this simulation, stripped of all unnessecary functionality.

the file startit.m:

clear all;

name='noraftterm';
kd   = 1.35e-4;
ki   = 7e2;
kp   = 6.6e2;
kPaddSR  = 7e6;        %P adds
kPaddSP  = 7e6;
kRaddSP  = 7e6;        %R adds
kRaddSR  = 7e6;
kbetaPSP = 1.2e5;        %P fragments
kmaddPSR = 1.2e5;
kbetaRSR = 1.2e5;        %R fragments
kbetaPSR = 1.2e5;
ktbasis  = 2*pi*0.25*7e-9*6.02e23;
ktbI     = 1.5*pi*0.25*7e-9*6.02e23; %ktbasis; %set zero to eliminate intermediate 
termination

kmatrix =[kd ki kp kPaddSR kbetaPSR kmaddPSR kRaddSR kbetaRSR kPaddSP kbetaPSP 
kRaddSP ktbasis ktbI];

maxci = 0.9999;
maxcm = 0.9999;

mx = [maxci maxcm];

mmo=31;
msol=58;
mass=[mmo msol];

I   = 4.4e-3;  %initiator
M   = 3;       %monomer
R   = 0;       %ini- or raft-derived radicals
SR  = 0;       %raft
P   = 0;       %propagating radicals
SP  = 0;       %dormant species
D   = 0;       %dead chains
RSR = 0;       %intermediate
RSP = 0;       %intermediate
PSP = 0;       %intermediate
%------------------------------------------------------------------------------------
y0=[I M R SR P SP D RSR RSP PSP];
tmax=[0 3.5e5];
options = odeset('AbsTol',1e-12,'RelTol',3e-
13,'BDF','off','Stats','on','Events','on');
%------------------------------------------------------------------------------------
tic;
[t,x]=ode15s('simpleraft',tmax,y0,options,kmatrix,y0,mass,mx);
toc;
%------------------------------------------------------------------------------------
fpm = fopen('overview.txt','a');
temp=[name '\r\n'];
fprintf(fpm,temp);
temp=['ini \t' num2str(I,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['mono \t' num2str(M,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['raft \t' num2str(SR,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['kd \t' num2str(kd,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['ki \t' num2str(ki,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['kp \t' num2str(kp,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['kRaddSR \t' num2str(kRaddSR,'%.3g') '\r\n'];
fprintf(fpm,temp);
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temp=['kRaddSP \t' num2str(kRaddSP,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['kPaddSR \t' num2str(kPaddSR,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['kPaddSP \t' num2str(kPaddSP,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['kbetaRSR \t' num2str(kbetaRSR,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['kbetaPSP \t' num2str(kbetaPSP,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['kbetaPSR \t' num2str(kbetaPSR,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp=['kmaddPSR \t' num2str(kmaddPSR,'%.3g') '\r\n'];
fprintf(fpm,temp);
temp='\r\n\r\n';
fprintf(fpm,temp);
fclose(fpm);
%------------------------------------------------------------------------------------
nm= [name '.dat']
fm  = fopen(nm,'w');
fprintf(fm,'t mc I M R SR P SP D RSR RSP PSP\n');
for i=1:max(size(t))
   mc=((M-x(i,2))/M)*100;
   fprintf(fm,'%.4e %.4e %.4e %.4e %.4e %.4e %.4e %.4e %.4e %.4e %.4e 
%.4e\n',t(i),mc,x(i,1),x(i,2),x(i,3),x(i,4),x(i,5),x(i,6),x(i,7),x(i,8),x(i,9),x(i,10
));
end % for i
fclose(fm);
%------------------------------------------------------------------------------------
clear all;

and the file simpleraft.m:

function varargout = simpleraft(t,y,flag,k,sv,m,mx)

switch flag
 case ''                      % Return dy/dt = f(t,y).
   varargout{1} = f(t,y,k,sv,m,mx);
 case 'events'                  % Return [value,isterminal,direction]
   [varargout{1:3}] = events(t,y,k,sv,m,mx);
 otherwise
   error(['Unknown flag ''' flag '''.']);
 end
% -------------------------------------------------------------
% 1  I       kd
% 2  M       ki
% 3  R       kp
% 4  SR      kPaddSR
% 5  P       kbetaPSR
% 6  SP      kmaddPSR
% 7  D       kRaddSR
% 8  RSR     kbetaRSR
% 9  PSR     kPaddSP
% 10 PSP     kbetaPSP
% 11         kRaddSP
% 12         ktbasis used for ordinary termination
% 13         ktbI    used for intermediate termination
% -------------------------------------------------------------
function dydt = f(t,y,k,sv,m,mx)

convM =(sv(2)-y(2))/sv(2);  % bereken conversie M
nc = (sv(4)-y(4))+2*(sv(1)-y(1));

if convM<1e-8
   convM=1e-8;
end

if nc<1e-8
   nc=1e-8;
end

if sv(4)>0
   length=round(convM*sv(2)/nc);   % radicaallengte=dormantlengte
else
   length=round((y(2)*k(3))/((2*(k(1)*y(1)*6e8)^0.5)+1e-3*y(2)));  % 
radicaallengte=kinetische lengte
end
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if length<3
   length=3;
end

wp=m(1)*convM/(m(1)+m(2)); % bereken wp

Dmon    = 9e-8;
Dshort  = Dmon;
Dlong   = Dmon/(length^min(2, 0.66+2*wp));
Ddouble = Dmon/((2*length)^min(2, 0.66+2*wp));

ktSS  = k(12)*(Dshort+Dshort);
ktISS  = k(13)*(Dshort+Dshort);
% ktLL  = k(12)*(Dlong+Dlong);
ktLS  = k(12)*(Dlong+Dshort);
ktILS  = k(13)*(Dlong+Dshort);
% ktLLL = k(13)*(Ddouble+Dlong);    %intermediate termination PSP P
ktLLS = k(13)*(Ddouble+Dshort);   %intermediate termination PSP R

eff=0.7;
Ithermal=4e-9*y(2)^3;
IT=Ithermal;

 dydt = zeros(10,1);
 dydt(1)=-k(1)*y(1);
 dydt(2)=-k(3)*y(2)*y(5)-k(2)*y(3)*y(2);
 dydt(3)=IT+k(1)*eff*2*y(1)+k(5)*y(9)+k(8)*y(8)-k(7)*y(3)*y(4)-k(11)*y(3)*y(6)-
ktLS*y(3)*y(5)-ktLLS*y(3)*y(10)-k(2)*y(3)*y(2)-ktSS*y(3)*y(3)-ktILS*y(3)*y(9)-
ktISS*y(3)*y(8);
 dydt(4)=k(6)*y(9)+k(8)*y(8)-k(4)*y(5)*y(4)-k(7)*y(3)*y(4);
 dydt(5)=k(2)*y(3)*y(2)+k(6)*y(9)+k(10)*y(10)-k(4)*y(4)*y(5)-k(9)*y(5)*y(6)-
ktLS*y(5)*y(5)-ktLLS*y(5)*y(10)-ktLS*y(3)*y(5)-ktLLS*y(5)*y(9)-ktILS*y(5)*y(8);
 dydt(6)=k(5)*y(9)+k(10)*y(10)-k(9)*y(5)*y(6)-k(11)*y(3)*y(6);
 
dydt(7)=ktLS*y(5)*y(5)+ktLS*y(5)*y(3)+ktLLS*y(5)*y(10)+ktLLS*y(3)*y(10)+ktISS*y(3)*y(
8)+ktILS*y(5)*y(8)+ktILS*y(3)*y(9);
 dydt(8)=k(7)*y(3)*y(4)-k(8)*y(8)-ktISS*y(3)*y(8)-ktILS*y(5)*y(8);
 dydt(9)=k(4)*y(4)*y(5)+k(11)*y(3)*y(6)-k(5)*y(9)-k(6)*y(9)-ktILS*y(3)*y(9)-
ktLLS*y(5)*y(9);
 dydt(10)=k(9)*y(5)*y(6)-k(10)*y(10)-ktLLS*y(5)*y(10)-ktLLS*y(3)*y(10);
 %----------------------------------------------------------------------------------
  function [value,isterminal,direction] = events(t,y,k,sv,m,mx)

 % sv(1)= concentration I at t=0,  sv(2)= concentration M at t=0
 % y(1) = concentration I at t=t,  y(2) = concentration M at t=t
 % mx(1)= maximum conversion of I, mx(2)= maximum conversion of M
 % abort integration when one of both components reaches max. conversion

 value = zeros(1,2);             % max conversion=zero crossing
 % value(1:2) = [((sv(1)-y(1))/sv(1))-mx(1), ((sv(2)-y(2))/sv(2))-mx(2)];
 value(1:2) = [1, ((sv(2)-y(2))/sv(2))-mx(2)];
 
 isterminal = zeros(1,2);
 isterminal(1:2) = [1,1];

 direction = zeros(1,2);         % direction unimportant
% -------------------------------------------------------------

when the startit command is given to MATLAB, the code in the first file is

executed. The first section allows the user to set different rate constants and concen-

trations. The second section prepares the integration by constructing a vector of

starting conditions and setting the options. The third section executes the integra-

tion using the ode15s solver and calling simpleraft.m for a description of the dif-

ferential equations. When the integration is finished, the vector t contains the time

points of the integration and the corresponding rows in matrix x contain the concen-

trations for each of the six different species. The fourth section creates a basic
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+Pi

+Pi

Pi +
output file containing all the data in ASCII format. Fully functional .m files can be

obtained from the author upon request. They may also be downloaded from the

author’s website (currently www.xs4all.nl/~engel13).

A.2.2. Exact Model

Construction

The second approach mentioned in the introduction uses a differential equation

for each individual chainlength for all species and several others for monomer, initi-

ator, etc. The following reaction scheme allows the required set of differential

equations to be derived.

These then are as follows:

species

initiator I

monomer M

radical P

dormant chain T

dead material D

rate constants

dissociation kd

propagation kp

combination ktc

disproportionation ktd

transfer ktr

initiator effcicency f

(7-15)

(7-16)

(7-17)

M Pi+1

kp

kd

I 2 P0

ktr

Tj +Pj Ti

ktc

ktd

Di+j

+Di Dj

Pj

dI

dt
----- kd– I⋅=

dM

dt
-------- kp– M P⋅ ⋅=

dP0

dt
--------- 2 f kd I⋅ kpP0 M⋅ ⋅ ktr P0 Tj

j 0=

n

∑⋅⋅ ktr T0 Pj

j 0=

n

∑⋅⋅+––

ktc P0 Pj

j 0=

n

∑⋅ ktd P0
Pj

j 0=

n

∑⋅⋅–⋅–

=
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the subscript i in the disributed species denotes the number of monomer units. P0 is

therefore not a polymer radical, but a chemically different species derived from the

initiator or transfer agent. T0 – a dormant species without monomer units – is the

initial transfer agent. When n different chainlengths are considered, the total

number of differential equations equals 4 n+1. Although the model is in principle

ideal for most of the living polymerizations in this thesis, it does not allow for com-

parison of the results with those of (simulated) polymerizations applying less

reactive transfer agents.

Besides, the transfer reaction cannot be unraveled further by the use of the full

addition–fragmentation equilibrium. The intermediate species has two chains

attached to the dithio moiety and the length of both needs to be remembered when it

is formed which would result in ½ n2 extra differential equations. For the example

given in the introduction this would result in an increase from 450 differential

equations to 11,700!

Implementation

Luckily, not all differential equations need to be hardcoded. For each of the

species, the differential equations for the various chain lengths are very similar and

they can be constructed programatically using a loop to iterate through all chain

lengths. Again two files are made:

the file run.m

clear all;       % clear all variables in the Matlab environment

n  = 80;         % number of identifiable species
nr = (4*n)+4;    % number of differential equations

(7-18)

(7-19)

(7-20)

dPi

dt
-------- kp P

i 1–
M⋅ ⋅ kpPi M⋅ ⋅ ktr Pi Tj

j 0=

n

∑⋅⋅ ktr Ti Pj

j 0=

n

∑⋅⋅+––

ktc Pi Pj

j 0=

n

∑⋅ ktd Pi Pj

j 0=

n

∑⋅⋅–⋅–

=

dTi

dt
-------- ktr Pi Tj

j 0=

n

∑⋅⋅ ktr Ti Pj

j 0=

n

∑⋅⋅–=

dDi

dt
--------- ktc Pj Pi j–⋅

j 0=

i

∑⋅ ktd Pi Pj

j 0=

n

∑⋅⋅+=
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ktr = 6.5e3;     % transfer rate constant
kp  = 6.5e2;     % propagation rate constant
kd  = 7.4e-5;    % dissociation rate constant
f   = 0.6;       % initiator efficiency

T = 5.9e-2;      % initial transfer agent concentration
I = 2e-2;        % initial initiator concentration
M = 3;           % initial monomer concentration

maxci=0.999999;  % stop integration at this conversion for initiator I
maxcm=0.999;     % stop integration at this conversion for monomer M
maxpc=0.01;      % max fraction of raft chains as undistinguishable species

tmax = 1e8;      % alternate time of integration
%---------section 2------------------------------------------------------------------
% gather the required parameters

kvalue=[kd ktr kp f];
conc=  [I M T];
maxc=  [maxci maxcm maxpc];
y0=zeros(1,nr);
y0(1:3)=conc;
%---------section 3------------------------------------------------------------------
% construct a matrix e containing the chain length dependend
% termination rate coefficients

TERM=zeros((n+1),(n+1));
for i=1:(n+1)
  for j=1:(n+1)
    if (i<=85)
      D1=3.1e-5/((i+1)^0.5);
    else
      D1=3.1e-5*(85^0.1)/((i+1)^0.6);
    end    % if i
    if (j<=85)
      D2=3.1e-5/((j+1)^0.5);
    else
      D2=3.1e-5*(85^0.1)/((j+1)^0.6);
    end    % if j
    TERM(i,j)=5.58e13*(D1+D2);
  end %for j
end %for i
%-----section 4--calculation--------------------------------------------------------
[t,x]=ode15s('raft',[],y0,[],kvalue,conc,maxc,n,TERM);
%-----create output-----------------------------------------------------------------
%-----section 5----open files-------------------------------------------------------
fm = fopen('main.dat','w');
ft = fopen('raft.dat','w');
fp = fopen('rad.dat','w');
%-----section 6----create headers---------------------------------------------------
fst='time mc';
fsp='time mc';

for j = 0:n
   fst=[fst ' t' num2str(j)];
   fsp=[fsp ' p' num2str(j)];
end

fst=[fst ' \n'];
fsp=[fsp ' \n'];

fprintf(fm,'time mc mono ini dead mnR mwR pdR mnD mwD pdD\n');
fprintf(ft,fst);
fprintf(fp,fsp);
%------section 7-----MW averages--raft----------------------------------------------

r=zeros(max(size(t)),6);
for i=1:max(size(t))
   for j=0:n
      r(i,1)=r(i,1)+x(i,3+j);                                     % SUM N
      r(i,2)=r(i,2)+(x(i,3+j)*(250+(j*104.15)));                  % SUM (N*M)
      r(i,3)=r(i,3)+(x(i,3+j)*(250+(j*104.15))*(250+(j*104.15))); % SUM (N*M^2)
   end
   r(i,4)=r(i,2)/r(i,1);   % number average molar mass   Mn= SUM(N*M)/SUM(N)
   r(i,5)=r(i,3)/r(i,2);   % weight average molar mass   Mw= SUM(N*M^2)/SUM(N*M)
   r(i,6)=r(i,5)/r(i,4);   % polydispersity index        PD= Mw/Mn
end
%------section 8----MW averages--dead-----------------------------------------------
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d=zeros(max(size(t)),6);
for i=1:max(size(t))
   for j=0:((2*n)-1)
      d(i,1)=d(i,1)+x(i,3+j);                                           % SUM N
      d(i,2)=d(i,2)+(x(i,5+(2*n)+j)*(130+(j*104.15)));                  % SUM (N*M)
      d(i,3)=d(i,3)+(x(i,5+(2*n)+j)*(130+(j*104.15))*(130+(j*104.15))); % SUM (N*M^2)
   end
   d(i,4)=d(i,2)/d(i,1);   % number average molar mass   Mn= SUM(N*M)/SUM(N)
   d(i,5)=d(i,3)/d(i,2);   % weight average molar mass   Mw= SUM(N*M^2)/SUM(N*M)
   d(i,6)=d(i,5)/d(i,4);   % polydispersity index        PD= Mw/Mn
end
%------section 9----output----main--raft--rad----------------------------------------

for i=1:max(size(t)),
   mc = ((M - x(i,2))/M)*100;
   fprintf(fm,'%.4e %.4e %.4e %.4e %.4e %.4e %.4e %.4e %.4e %.4e 
%.4e\n',t(i),mc,x(i,2),x(i,1),x(i,(2*n+5)),r(i,4),r(i,5),r(i,6),d(i,4),d(i,5),d(i,6))
;
   fprintf(ft,'%.4e %.4e',t(i),mc);
   fprintf(fp,'%.4e %.4e',t(i),mc);
   
   for j = 0:(n-1)
      fprintf(ft,' %.3e',x(i,3+j));   % loop raft species
      fprintf(fp,' %.3e',x(i,4+n+j)); % loop radical species
   end
   fprintf(ft,' %.3e \n',x(i,3+n));   % add final species of each series and add
   fprintf(fp,' %.3e \n',x(i,4+n+n)); % an end-of-line character
end
%----section 10-- close files--------------------------------------------------------
fclose(fm);
fclose(ft);
fclose(fp);
%------section 11-----the-dead-files-------------------------------------------------
aantal=(2*n)-1;           % aantal dode species
spf=200;                  % aantal species per file
bestand=fix(aantal/spf);  % aantal files (max 200 species per file) minus 1

for i = 0:bestand         % loop door veschillende bestanden (waarde nul is 1 
bestand)
  naam=['dead' num2str(i) '.dat'];  %maak filenaam aan
  fd = fopen(naam,'w');             %open file

  if (i<bestand)
     sif=spf;             % sif is aantal bestanden in deze file alleen in de laatste 
  else                    % file is het kleiner dan spf
     sif=aantal-(bestand*spf);
  end  %if

  fsd='time mc';          % header aanmaken
  for j = 0:(sif-1)
     fsd=[fsd ' d' num2str(j+(i*spf))];
  end      % for j
  fsd=[fsd ' \n'];
  fprintf(fd,fsd);

  for k=1:max(size(t)),          % tijden doorlopen
    mc = ((M - x(k,2))/M)*100;
    fprintf(fd,'%.4e %.4e',t(k),mc); % conversie & tijd printen

    for j = 0:(sif-2)            % species doorlopen op 1 na
      temp= x(k,5+(2*n)+j+(i*spf)); 
      if (temp<1e-120)           % prevent ultra-small numbers (unreadable by Origin)
           temp=0;
      end                        % if
      fprintf(fd,' %.3e',temp);  % loop dead species
    end                          %for j

    j=sif-1;                     % laatste species
    temp = x(k,5+(2*n)+j+(i*spf));
    if (temp<1e-120)
        temp=0;
    end                          % if
    fprintf(fd,' %.3e \n',temp);
  end                            % for k
  fclose(fd);
end                              %for i
%----section 12---MWDs--------------------------------------------------------------
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conv=[1 2 5 10 15 20 25 30 40 50 60 70 80 90 95 96 97 98 99];
nummer=1;
wr=zeros(2,n);           % gewicht raft (1 kolom absoluut/2 geschaald)
wd=zeros(2,(2*n-1));     % gewicht dood (1 kolom absoluut/2 geschaald)

for k=1:max(size(t)),    % tijden doorlopen
   mc = ((M - x(k,2))/M)*100;

   if (nummer>max(size(conv))),break,end     % alle output files klaar

   if (mc>conv(nummer))
     nummer=nummer + 1;
         
     fn=['r' num2str(conv(nummer-1)) '.dat'];
     fm = fopen(fn,'w');

     for i = 0:(n-1)
       wr(1,(i+1))=(250+(i*104));             % mw as
       wr(2,(i+1))=x(k,3+i)*(250+(i*104));    % gewichts distributie
       fprintf(fm,'%.3e %.3e \n', wr(1,(i+1)), wr(2,(i+1)));
     end % for i

     fclose(fm);
     fn=['d' num2str(conv(nummer-1)) '.dat'];
     fm = fopen(fn,'w');

     for i = 0:(2*n-1)
       wd(1,(i+1))=(130+(i*104));                   % mw as
       wd(2,(i+1))=x(k,5+(2*n)+i)*(130+(i*104));    % gewichts distributie
       fprintf(fm,'%.3e %.3e \n', wd(1,(i+1)), wd(2,(i+1)));
     end % for i
       fclose(fm);
     end % if
end % for k
%-----------------------------------------------------------------------------
clear all;

and the file raft.m

function varargout = raft(t,y,flag,a,b,c,d,e)
 
 switch flag
 case ''                        % Return dy/dt = f(t,y)
   varargout{1} = f(t,y,a,b,c,d,e);
 case 'init'                    % Return default [tspan,y0,options]
   [varargout{1:3}] = init(a,b,c,d,e);
 case 'events'                  % Return [value,isterminal,direction]
   [varargout{1:3}] = events(t,y,a,b,c,d,e);
 otherwise
   error(['Unknown flag ''' flag '''.']);
 end

% ---------------+------------+----------+-----------------------
% conc. in time  |k-values |conc. t=0 | max conversions
% ---------------+------------+----------+-----------------------
%I   y(1)        kd   a(1)    I0  b(1)   max.conv. I     c(1)
%M   y(2)        ktr  a(2)    M0  b(2)   max.conv. M     c(2)
%T0  y(3)        kp   a(3)    T0  b(3)   max. long raft  c(3) 
%Tn  y(3+d)      f    a(4)
%P0  y(4+d)     
%Pn  y(4+2d)
%D0  y(5+2d)
%D2n y(4+4d)
% ---------------------------------------------------------------
%number of species d
%kt matrix         e
% ---------------------------------------------------------------
 function dydt = f(t,y,a,b,c,d,e)

 no = (4*d)+4;               % number of differential equations
 dydt=zeros(no,1);           % define output column vector
 rad=sum(y((4+d):(4+2*d)))   % total radical concentration
 raft=sum(y(3:(3+d)));       % total raft concentration
%---------------------------------------------------------------
% calculate the average radical chain length
 
 av=0;
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 for i = 0:d             % for all chain lengths
    av=av+(y(4+d+i)*i);  % summarize concentration * length
 end
 
 if (rad<=0)             % avoid error right at the
    av=0;                % start of integration
 else
    av=fix(av/rad)       %average radical chainlength
 end
%---------------------------------------------------------------
% construct differential equations
 
 dydt(1) = -a(1)*y(1);     % initiator decay
 dydt(2) = -a(3)*y(2)*rad; % monomer consumption

 for i = 0:d               % dormant species & radicals
   dydt(3+i)= a(2)*y(4+d+i)*raft-a(2)*y(3+i)*rad;
   dydt(4+d+i)=-a(3)*y(4+d+i)*y(2)-a(2)*y(4+d+i)*raft+a(2)*y(3+i)*rad
               -e((av+1),(i+1))*y(4+d+i)*rad;
 end
 
 for i = 1:(d)             % radicals
   dydt(4+d+i)=dydt(4+d+i)+(a(3)*y(2)*y(3+d+i));
 end
                           % initiator contribution to P0
 dydt(4+d)=dydt(4+d)+(2*a(1)*a(4)*y(1));

                           % cancel propagation for Pn
 dydt(4+2*d)=dydt(4+2*d)+(a(3)*y(4+2*d)*y(2));

                           % dead species------------------------------------ 
 for i=0:(d-1)             % chain length dead material
   for j=0:i               % loop different combinations to form dead species
      r1=i-j;              % length radical 1
      r2=j;                % length radical 2
      dydt(5+(2*d)+i)=dydt(5+(2*d)+i)+e((r1+1),(r2+1))*y(4+d+r1)*y(4+d+r2);
   end 
 end   

  for i=d:(2*(d-1))        % chain length dead material
   for j=fix(i/2):-1:0     % loop different combinations to form dead species
      r1=i-j;              % length radical 1
      r2=j;                % length radical 2
      if (r1>(d-1))|(r2>(d-1)),break,end  % non existing radical length
      dydt(5+(2*d)+i)=dydt(5+(2*d)+i)+e((r1+1),(r2+1))*y(4+d+r1)*y(4+d+r2);
   end
 end

 dydt(4+4*d)=e(d,d)*y(4+2*d)*y(4+2*d);
%---------------------------------------------------------------------------------

 function [tspan,y0,options] = init(a,b,c,d,e)

 tspan = [0 1e8];    % default timespan
 nr = (4*d)+5;       % number of differential equations/compounds
 y0 = zeros(1,nr);   % starting concentrations
 y0(1:3) = b(1:3);
 options =odeset('AbsTol',1e-7,'RelTol',1e-7,'BDF','off','Stats','on','Events','on');
                     % error tolerances 
%---------------------------------------------------------------------------------
 function [value,isterminal,direction] = events(t,y,a,b,c,d,e)

 % b(1)= concentration I at t=0,  b(2)= concentration M at t=0
 % y(1)= concentration I at t=t,  y(2)= concentration M at t=t
 % c(1)= maximum conversion of I, c(2)= maximum conversion of M
 % abort integration when one of both components reaches max. conversion

 % second criterium: integrating noise, [radicals]<0

 % third criterium: heap of non-distinguisable species > 1%

 value = zeros(1,d+4);             % max conversion=zero crossing
 value(1:2) = [((b(1)-y(1))/b(1))-c(1), ((b(2)-y(2))/b(2))-c(2)];
 
 for i =0:d
    value(i+3) = y(4+d(1)+i);      % [radical]<0
 end
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 value(1,d+4)= (y(d+3)/b(3))-c(3); % third criterium

 isterminal = zeros(1,d+4);
 isterminal(1:2) = [1,1];
 isterminal(d+4) =[1];             % all are terminal events
 direction = zeros(1,d+4);         % direction unimportant
%-------------------------------------------------------------------------------

The files are for a large part self explanetory. Comments can be found inline

with the code. The same general structure is applied as in the previous model.

run.m collects and prepares the input parameters, calls the ode15s solver which

uses the differential equations in raft.m, and produces several output files from the

raw integration results. raft.dat, rad.dat and deadX.dat (X being an integer)

contain the concentrations of each and every species in time. Main.dat contains the

molar mass averages, polydispersities and conversion as a function of time. Section

12 generates a number of molar mass distributions at the conversions specified in

the conv vector. For every point both an rX.dat and dX.dat (X being the conver-

sion) file are created containing the molar mass distribution of the dormant chains

and of the dead material respectively.

 The raft.m file illustrates the use of events. As only a limited number of

chain lengths is considered the model will need to check during the integration

whether or not this number still suffices. If any material grows to larger chain

lengths, the model needs to terminate. This can be achived by removal of the

positive contribution of propagation from the largest radical species (in its differen-

tial equation). This prevents polymer ‘growing out of the model’. The largest

radical species Pn not only represents polymer radicals with length n, but cumilates

all longer chains as well. In every iteration the model checks the concentration of Pn

and as soon as it amounts to more then 1% of the total radical concentration, the

integration is halted. Events are constructed in such a way that they represent a

certain zero-crossing. The actual percentage of Pn is substracted from 1 so that the

event-value evaluates to zero and is recognised by MATLAB. Reaching the

maximum conversion for either initiator or monomer and negative radical concen-

trations also trigger events that halt the integration because they indicate that the

polymerization is essentially finished and that further integration will yield mean-

ingless results.

A.2.3. The Method of Moments

The third model discussed in the introduction aims to keep track of the molar

mass averages of a distribution rather than the full distribution itself which, as

shown in the previous section, is not possible for a lot of systems. The computa-
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tional power released by this simplification can be employed to tackle more

demanding polymerizations. The derivation of the differential equations from the

reaction scheme is in this case slightly more complicated. The same reaction

scheme is used as for the exact model to arrive at the following differential

equations for the individual species:

The differential equations for the initiator and the monomer can be used

directly in the model. Note that P0 and T0 are treated seperately and have been

taken out of their distribution. This affects only the zeroth moment of the distribu-

tion as for the higher moments the contribution of the individual species is multi-

(7-21)

(7-22)

(7-23)

(7-24)

(7-25)

(7-26)

(7-27)

dI

dt
----- kd– I⋅=
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dt
-------- kp– M P⋅ ⋅=

dP0

dt
--------- 2fkd I⋅ kp P0 M⋅ ⋅ ktr P0 Tj

j 0=

∞

∑⋅⋅ ktr T0 Pj
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∞

∑⋅⋅+––

ktc P0 Pj

j 0=

∞

∑⋅ ktd P0 Pj

j 0=

∞

∑⋅⋅–⋅–

=

dPi

dt
-------- kp M Pi 1– Pi–( )⋅ ⋅ ktr Pi Tj
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∞
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∞

∑⋅⋅+–
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∑⋅⋅–⋅–

=

dT0

dt
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j 1=

∞
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j 1=

∞

∑⋅⋅–=

dTi

dt
-------- ktr Pi Tj
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∞
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j 0=

∞
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dDi
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j 0=

i
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∞
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dµ0
P

dt
--------- =

dµ0
P

dt
--------- =

dµ0
P

dt
--------- =
plied with its index (see formula 7-1) which cancels out the zero-length species.

Before these equations can be put in the model they need to be rewritten so that

they are expressed in moments:

The equations for Pi, Ti and Di are used to derive the respective differential

equations for the moments of these distributions. The differential equation for the

zeroth moment of the radical distribution follows from summation over all i from 1

to infinity:

Keeping in mind that the zeroth moment is in fact the total concentration of

polymeric radicals, the correctness of the obtained differential equation can easily

be rationalized. There are positive contributions from initiator derived radicals that

‘propagate into the distribution’ as well as from dormant polymer chains that

become activated by such a radical. Negative contributions result from both termi-

nation and the reaction between transfer agent and a propagating species which

generates a P0 instead of a Pi radical.

(7-28)

(7-29)

(7-30)

(7-31)

(7-32)
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-33)

-34)

-35)

-36)
The same technique will be used to arrive at the differential equations for the

first and the second moment although for these cases the result takes a more

abstract form:

and the second moment

The moments for the dormant species are derived as follows:

(7

(7

(7
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zeroth moment:

first moment:

second moment:

for the dead chains:

(7-37)

(7-38)

(7-39)

(7-40)

(7-41)

(7-42)

(7-43)
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in which the contribution from disproportionation can readily be expressed in

moments. Rewriting the contribution from combination requires the use of the

following identity: 

the first step can be visualized if we consider a three dimensional space:

the middle illustration shows which area on the base, the nk-plane, is covered by the

first summation. The same area is covered by the second summation. Here k runs

from zero to infinity while n runs from the current k value to infinity. When in this

summation, n is replaced by the new running variable n+k, the summation takes its

final form. If this identity is applied to equation 7-43 , it can be expressed in the

moments of the radical distribution.

the same identity is used in the derivation of the first and the second moment:

(7-44)
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now that the appropiate differential equations have been derived, they can be put in

a MATLAB .m file similar to the other models. The output matrix contains the

evolution of the moments in time from which the molar mass averages and the poly-

dispersity can be calculated according to equations 7-2 and 7-3.

To develop the model further it would be desirable to use the full addi-

tion–fragmentation equilibrium and to investigate the intermediate radical as well.

As mentioned in the previous model, the intermediate radical has a double distribu-

tion and the length of both chains attached to the dithiocarbonate moitey needs to

be known (Scheme 1). Treatment of such a ‘two dimensional’ compound is impos-

sible with the method of moments. When the intermediate is simplified to a one

dimensional species, the length of the individual chains that are regenerated upon

(7-48)

(7-49)

(7-50)

(7-51)

(7-52)
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fragmentation is not known (Scheme 2). This approach is therefore rejected. A

good alternative is the physically unrealisic scheme where the transfer reaction

generates two polymer chains (Scheme 3). The reaction is mathematically identical

to termination by disproportionation and can easily be described using the moments

method. Fragmentation then can be described as a unimolecular transition to either

a dormant or a radical species. The concentration dependencies of the rate (frag-

mentation being first order in the concentration of the intermediate) are maintained

in the original state. The consequences of this unrealistic simulation are a faulty

concentration of the intermediate species. This can be corrected as the difference is

a factor of two. Calculating the average molar mass will also yield erroneous

results, but these data are not of particular interest anyway. More important is the

molar mass of the termination product formed in the reaction between the interme-

diate species and a propagating radical. To arrive at the correct molar mass, this will

need to be a trimolecular reaction using two intermediate species and a radical. 

When the model is transformed into differential equations, the correct rate

structure will be lost. The rate of the last termination reaction, that of the intermedi-

ate radical will increase by a factor of four when the concentration of the intermedi-

ate radical doubles. The correct rate structure can be restored (first order in both

intermediate and radical concentration) when substituting the last reaction in

Scheme 3 with the two reactions in Scheme 4 allows the complete scheme to be

expressed in differential equations, maintaining correct reaction rates and allowing

the predication of all molar mass averages. However the prerequisite that the second

reaction of Scheme 4 be much faster than the first (in other words, the first reaction

is the rate determining step) makes the entire matrix of differential equations close

to singular and leads to an extremely stiff system which cannot be solved anymore.

The integrator will be required to make extremely small steps on the entire

timescale solely because of this reaction. Up to now, no method was found to cir-

cumvent this problem.

scheme 3 scheme 4
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A.3. Monte Carlo Simulations

Monte Carlo simulations are based on the element of chance. They do not

require the chemical reactions to be transformed into a mathematical model of dif-

ferential equations, but instead make use of probability functions and random

numbers. The model used to investigate the effect of the transfer coefficient and the

targeted degree of polymerization on the polydispersity of the final product requires

four input parameters, in its current implementation: amount of monomer, amount

of RAFT agent, the transfer rate coefficient and the propagation rate coefficient. Of

the latter two, only their ratio is of importance, reducing the number of actual

parameters to three. The simulation neglects termination events and physicalle cor-

responds to a polymerization with one single radical. One of the RAFT agents is

randomly chosen to be the active species. Monomer species are added one by one to

the active species. Before each addition occurs, the chance of transfer is calculated

using Eq. 7-53:

 is compared with a random value between 0 and 1 and if transfer

occurs, a new, randomly chosen, species from the population is set to be active. The

ratio of monomer to raft agent determines the target degree of polymerization, one

of the experimental parameters, while the magnitude of the individual species deter-

mines the statistical variation. Larger populations of monomer and RAFT, but in the

same ratio, will produce more consistent results.
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(7-53)P transfer( )
ktr RAFT⋅

ktr RAFT⋅ kp M⋅+
-----------------------------------------------=

P transfer( )
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