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» A year here and still he dreamed of cyberspace,

hope fading nightly. All the speed he took, all the turns he'd taken

and the corners he'd cut in Night City, and still he'd see the matrix in his sleep,
bright lattices of logic unfolding across that colorless void... «f

Appendix: Polymerization Models

Synopsis: This appendix discusses several approaches in the modeling of living

radical polymerizations with their specific advantages and disadvantages.

A.1. Numerical Integration of Differential EQuations

The reaction scheme of free radical polymerization, living or not, presented in
chapter 2 shows that only a relatively small number of different species take part in
these reactions: initiator, monomer, transfer agent, radicals, dormant polymer
chains and dead polymer material. The latter three types, however, are polymeric
species which means that they come in a variety of chainlengths. The way in which
the chain length is dealt with constitutes the primary difference between the models

described in this appendix. Three approaches can be distinguised.

First, the chainlengths can be completely ignored. Although simulations using
such models will not yield any information on the polymer as such, they may be
used to illustrate simple kinetic effects as in chapter 2, where it was shown that an
additional reaction needs to be invoked to explain the retardation that is observed in
RAFT polymerizations. The advantage of such a model is that it is both simple and
executes very fast. The number of differential equations can range from about five
to ten, depending on how detailed different termination and transfer events are
treated. The most important disadvantage is of course that no information is gained

on the polymer, other than its concentration (in moles per unit volume).

Second, all chainlengths can be considered individually. This means that for
each of the polymeric species (radicals, dormant chains and dead polymer), a large
number of differential equations needs to be solved. One for each individual chain-
length that exists during the polymerization. The advantage is that the most

complete picture of the resulting polymer is obtained. Full molar mass distributions
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can be constructed from the data and within these it is possible to locate the dead
and dormant materials. The disadvantage is that this approach may be applied only
to a limited number of polymerizations. The number of differential equations is
about three times larger than the number of chain lengths that is monitored during
the polymerization. Uncontrolled free radical polymerizations grow chains of a few
thousand repeat units from the start of the reaction resulting in simulations that
require far more than 10,000 differential equations to be solved simultaniously.
More often than not, these differential equations form a stiff system which rapidly
becomes insolvable for any computer as the number of differential equations
increases. Conventional free radical polymerizations therefore, cannot be simulated
with such an approach on common computers. The situation is completely different
for living free radical polymerizations. As outlined in chapter 2 the average chain
length is a linear function of conversion and its distribution is of low polydispersity.
This means if a reaction is set to produce material of say 150 monomer units, that
during the entire reaction no material is formed which would significantly exceed
this length. To accomodate material formed by combination — which may be
slightly longer — and provide a bit of overhead for the non-monodispersity of the
distribution, somewhat more than 450 differential equations are required and the
simulation can be executed on a modern desktop computer in a timespan anywhere
between a few minutes to a day. The simulations remain restricted however to living
systems with a fast equilibrium between growing and dormant chains that aim at
producing relatively low molar mass material. In this thesis, such a model is used to
investigate the kinetics by matching simulations to molar mass distributions
obtained by HPLC that show individual oligomers up to a chain length of about 15

monomer units.

A third method forms a compromise between the abovementioned simulations.
It relies on the fact that any distribution can be characterized by a number of

moments. The i moment of the distribution of X (uix) is defined as follows:
X i
W= 37X (7-1)
j=0
in which X; is the concentration of species X with degree of polymerization i.

The more moments are known, the more accurately a distribution can be recon-
structed from these values. The zeroth moment corresponds to the total concentra-

tion of a certain species, covering all chain lengths. Higher moments take more
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abstract forms but they do allow experimentally accessible and physically important
polymer characteristics like number average molar mass, weight average molar
mass and polydispersity index to be calculated. The number average molar mass
(]\_/In) is defined as follows:

] x
zni Mi FWmon Ky

> Mo

M, = >'x-M, (7-2)

where x; is the mole fraction of molecules having degree of polymerization i. The
equation can also be expressed in numbers of molecules #; or alternatively in con-
centrations. The molar mass of a polymer chain can be replaced by the degree of
polymerization (i) times the molar mass of the monomer which allows the number
average molar mass to be expressed by the ratio of the first over the zeroth moment
of the polymer chain distribution times the mass of a single monomer unit
(FW

mon )

In an analogue derivation it can be shown that the weight average molar mass
(A_/Iw) is equal to the ratio of the second moment over the first moment of the distri-

bution, again multiplied by the mass of the repeat unit:

m

2
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(7-3)

The polydispersity index can then be calculated from the ratio of M,, over M,,.

More complex molar mass averages as M, and M, ; are derived from the
higher moments of a distribution in a similar way. For each of the moments of a dis-
tribution, a differential equation is required. The approach taken in this thesis is
restricted to the first three moments. This results in a model with approximately
fifteen differential equations which can readily be solved by ordinary desktop work-
stations. The derivation of the differential equations is however slightly more com-
plicated then for the previous modelling approaches where, albeit the large number

of differential equations, their structure was very straightforward.

The models result in a set of differential equations which is solved numerically
using MATLAB, a widely used environment for scientfic computing.? MATLAB

contains several different solvers for ordinary differential equations. For all models
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derived in this appendix, odel5s was used, which is a quasi-constant step size
integrator. It implements numerical differentiation formulas (NDFs) which can be
considered an improvement over the more commonly used backward differentiation
formulas (BDFs, also known as Gear’s method) in terms of stability, speed and effi-
ciency.® The transparent implementation adapts the stepsize of the integration
(through time) and the order of the fit to remain within the error margins given by
the user. The differential equations can either be hard-coded or constructed progra-

matically.

A.2. Models

A.2.1. Model withouth Chain Lengths

Construction

A simple model that does not consider any chainlengths is easily derived from
the reaction schemes in section 2.3 (Schemes 2.11 and 2.12) which shows how

species are generated and how they are destroyed or transformed.

dl
— = kg1 (7-4)
dt
am
— = —k,M-P—k;-M-R (7-5)
dt
dR
— = 2f kgl —k;-R-M+kpyo - (PSR+RSR) —kygy - (SR +SP)
dt (7-6)
—k,-R-(R+P+RSR+ PSR+ PSP)
dP
— =k;R-M—-k,-P-(R+P+RSR+ PSR+ PSP)
~kyga p- P (SR+SP)+ ks, p-P- (PSP +PSR)
dSR
— = Kirag.p* PSR +Kprae g~ RSR=Kygq g~ R+ SR—kyqq p- P - SR (7-8)
dasp
— = Kirag.p - PSP +ksug - PSR=Kyyq g~ R- SP=kuqq p- P-SP (7-9)

180



appendix models

dD
— =k,-R-(R+P+ PSP+ PSR+ RSR)

dr (7-10)
+k-P-(P+RSR+PSR+PSP)

dRSR
dt

= Koo r' R*SR—k o p- RSR—K,- RSR- (R + P) (7-11)

dPSR

= kogar RSP+ kygyp P~ SR=Kksoy g PSR
dt (7-12)
~Kyaq.p- PSR=k,- PSR- (R + P)

dPSP
dt

= Kogqp' P+ SP—kyy p- PSPk, PSP (R+P) (7-13)

The model as presented here utilizes a single termination rate constant, but the
actual computer files allow one to distinguish intermediate radical termination from

the other termination events.

Implementation

Equations 7-4 to 7-13 can be rewritten in a form that is desired by the MATLAB
solver. It can integrate ordinary differential equations if they are offered in the

following form:

Yy = F(t.y) (7-14)

in which ¢ is a scalar independent variable, in this case time; y is a vector of
dependent variables; y’ is a function of ¢ and y returning a column vector the same
length as y. In this case y could be the vector [I, M, P, T, S, D] and y’ the vector con-
taining the elements on the right hand side of the differential equations 7-4 to 7-13.
Besides these two vectors a third one is required which indicates the starting condi-
tions yq = [Ip, My, 0, Ty, 0, 0] and last, the options for the integrator need to be set.
These typically dictate the time interval for integration and the absolute and relative
error margins. Furthermore, optionally user defined conditions may be constructed
(so-called events) that prematurely stop the integration. In all the models in this
chapter, events were created that stopped integration when either monomer or
initiator had reached conversions higher than 99.999% and when the concentration

of any species would drop below zero. Further integration beyond this point would
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not result in additional meaningful results but stretched the required integration
time considerably. Shown below are the contents of the two basic .m files required

to run this simulation, stripped of all unnessecary functionality.

the file startit.m:

clear all;

name='noraftterm';

kd = 1.35e-4;

ki = 7e2;

kp = 6.6e2;

kPaddSR = 7e6; %P adds
kPaddspP = 7e6;

kRaddsSP = 7e6; %R adds
kRaddSR = 7e6;

kbetaPSP = 1.2e5; %P fragments
kmaddPSR = 1.2e5;

kbetaRSR = 1.2e5; %R fragments
kbetaPSR = 1.2e5;

ktbasis = 2*pi*0.25*7e-9%6.02e23;
ktbI = 1.5*pi*0.25*7e-9%6.02e23; %ktbasis; %set zero to eliminate intermediate
termination

kmatrix =[kd ki kp kPaddSR kbetaPSR kmaddPSR kRaddSR kbetaRSR kPaddSP kbetaPSP
kRaddSP ktbasis ktbI];

maxci
maxcm

0.9999;
0.9999;

mx = [maxci maxcm] ;

mmo=31;
msol=58;
mass=[mmo msol];

I = 4.4e-3; %initiator

M = 3; $monomer

R =0; %ini- or raft-derived radicals

SR = 0; $raft

P =0; $propagating radicals

SP = 0; %$dormant species

D =0; %dead chains

RSR = 0; %intermediate

RSP = 0; %intermediate

PSP = 0; %intermediate

% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
vy0=[I M R SR P SP D RSR RSP PSP];

tmax=[0 3.5e5];

options = odeset('AbsTol',le-12, 'RelTol', 3e-

13,'BDF', 'off','Stats','on', 'Events', 'on');

% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
tic;

[t,x]=0del5s ('simpleraft', tmax,y0,options, kmatrix,y0,mass,mx) ;

toc;

% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

fpm = fopen('overview.txt',6 'a');

temp=[name '\r\n'];

fprintf (fpm, temp) ;

temp=['ini \t' num2str(I,'%.3g') '\r\n'];
fprintf (fpm, temp) ;

temp=['mono \t' num2str(M,'%.3g') '\r\n'];
fprintf (fpm, temp) ;

temp=['raft \t' num2str(SR,'%.3g') '\r\n'l;
fprintf (fpm, temp) ;

temp=['kd \t' num2str(kd, '%$.3g') '\r\n'];
fprintf (fpm, temp) ;

temp=['ki \t' num2str(ki,'%$.3g') '\r\n'];
fprintf (fpm, temp) ;

temp=['kp \t' num2str(kp,'%.3g') '\r\n'];
fprintf (fpm, temp) ;

temp=["'kRaddSR \t' num2str(kRaddSR, '%$.3g') '\r\n'];
fprintf (fpm, temp) ;
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temp=['kRaddSP \t' num2str (kRaddsSP, '%$.3g') '\r\n'];
fprintf (fpm, temp) ;

temp=['kPaddSR \t' num2str (kPaddsSR, '%.3g') '\r\n'];
fprintf (fpm, temp) ;

temp=['kPaddSP \t' num2str (kPaddsSP, '%.3g') '\r\n'];
fprintf (fpm, temp) ;

temp=['kbetaRSR \t' num2str (kbetaRSR, '%$.3g') '\r\n'];
fprintf (fpm, temp) ;

temp=["'kbetaPSP \t' num2str (kbetaPSP, '%$.3g') '\r\n'];
fprintf (fpm, temp) ;

temp=['kbetaPSR \t' num2str (kbetaPSR, '%$.3g') '\r\n'];
fprintf (fpm, temp) ;

temp=["'kmaddPSR \t' num2str (kmaddPSR, '%$.3g') '\r\n'];
fprintf (fpm, temp) ;

temp='\r\n\r\n';

fprintf (fpm, temp) ;

fclose (fpm) ;

% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
nm= [name '.dat']
fm = fopen(nm, 'w');

fprintf(fm, 't mc T M R SR P SP D RSR RSP PSP\n') ;
for i=1:max(size(t))

me=( (M-x(1,2))/M)*100;

fprintf(fm, '$.4e %.4e %.4e %$.4e %.4e %.4e %.4e %.4e $.4e %.4e %.4e
%.4e\n',t(i),mc,x(1i,1),x(i,2),x(i,3),x(i,4),x(1i,5),x(i,6),x(1,7),x(1i,8),x(1,9),x(1i,10
)) i
end % for i
fclose (fm) ;

clear all;

and the file simpleraft .m:

function varargout = simpleraft(t,y,flag,k,sv,m, mx)

switch flag

case "' % Return dy/dt = f(t,y).
varargout{l} = f(t,y, k,sv,m,mx);

case 'events' % Return [value, isterminal,direction]
[varargout{1:3}] = events(t,y,k,sv,m, mx) ;

otherwise
error (['Unknown flag ''' flag '''.']);

end

% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

$1 I kd

$2 M ki

%$ 3 R kp

% 4 SR kPaddSR

%$ 5 P kbetaPSR

% 6 SP kmaddPSR

% 7 D kRaddSR

% 8 RSR kbetaRSR

% 9 PSR kPaddSP

% 10 PSP kbetaPSP

% 11 kRaddsp

% 12 ktbasis used for ordinary termination

% 13 ktbI used for intermediate termination

% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

function dydt = f(t,y,k,sv,m, mx)

convM =(sv(2)-y(2))/sv(2); % bereken conversie M
nc = (sv(4)-y(4))+2*(sv(1l)-y(1));

if convM<le-8
convM=1le-8;
end

if nc<le-8
nc=1le-8;
end

if sv(4)>0

length=round (convM*sv(2) /nc) ; % radicaallengte=dormantlengte
else

length=round((y(2)*k(3))/((2* (k(1)*y(1)*6e8)"0.5)+1le-3*y(2))); %
radicaallengte=kinetische lengte
end
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if length<3
length=3;
end

wp=m (1) *convM/ (m(1)+m(2)); % bereken wp

Dmon = 9e-8;

Dshort = Dmon;

Dlong = Dmon/ (length”min (2, 0.66+2*wp));
Ddouble = Dmon/ ((2*1length) min (2, 0.66+2*wp)) ;

ktSS = k(12)* (Dshort+Dshort) ;
ktISS = k(13) *(Dshort+Dshort) ;
% ktLL = k(12)*(Dlong+Dlong) ;
ktLS = k(12)* (Dlong+Dshort) ;
ktILS = k(13)*(Dlong+Dshort) ;

% ktLLL = k(13)* (Ddouble+Dlong) ; %intermediate termination PSP P
ktLLS = k(13)* (Ddouble+Dshort) ; %$intermediate termination PSP R
eff=0.7;

Ithermal=4e-9*y(2)"3;
IT=Ithermal;

dydt = zeros(10,1);

dydt (1)=-k(1) *y (1) ;

dydt (2)=-k(3) *y (2) *y (5) -k (2) *y (3) *y (2) ;

dydt (3)=IT+k (1) *eff*2*y (1)+k(5) *y(9)+k(8)*y(8)-k(7)*y(3)*y(4)-k(11l)*y(3)*y(6)-
ktLS*y (3) *y (5) ~ktLLS*y (3) *y (10) -k (2) *y (3) *y (2) -ktSS*y (3) *y (3) ~ktILS*y (3) *y (9) -
ktISS*y(3)*y(8);

dydt (4)=k(6)*y (9)+k(8) *y(8) -k (4) *y (5) *y (4) -k (7) *y (3) *y (4) ;

dydt (5)=k(2)*y(3) *y (2) +k(6) *y (9) +k (10) *y (10) -k (4) *y (4) *y (5) -k (9) *y (5) *y (6) -
ktLS*y (5) *y (5) ~ktLLS*y (5) *y (10) ~ktLS*y (3) *y (5) ~ktLLS*y (5) *y (9) ~ktILS*y (5) *y (8) ;
dydt (6)=k(5)*y (9)+k(10) *y (10) -k (9) *y (5) *y (6) -k (11) *y (3) *y (6) ;

dydt (7) =ktLS*y (5) *y (5) +ktLS*y (5) *y (3) +kt LLS*y (5) *y (10) +ktLLS*y (3) *y (10) +ktISS*y (3) *y (
8) +ktILS*y (5) *y(8) +ktILS*y (3) *y (9);

dydt (8)=k(7)*y(3)*y(4)-k(8) *y (8) -ktISS*y(3) *y(8) -ktILS*y(5) *y(8);

dydt (9)=k(4)*y (4) *y (5)+k(11) *y(3) *y (6) -k (5) *y (9) -k (6) *y (9) ~ktILS*y(3) *y (9) -
ktLLS*y (5) *y(9) ;

dydt (10) =k (9) *y (5) *y (6) -k (10) *y (10) -ktLLS*y (5) *y (10) -ktLLS*y (3) *y (10) ;

function [value,isterminal,direction] = events(t,y,k,sv,m, mx)
% sv(l)= concentration I at t=0, sv(2)= concentration M at t=0
% y (1) = concentration I at t=t, vy(2) = concentration M at t=t
% mx(1l)= maximum conversion of I, mx(2)= maximum conversion of M
% abort integration when one of both components reaches max. conversion

value = zeros (1,
% value(1:2) = [
value(1:2) = [1,

) ; % max conversion=zero crossing
(sv(1)-y(1))/sv(1l))-mx (1), ((sv(2)-y(2))/sv(2))-mx(2)];
((sv(2)-y(2))/sv(2))-mx(2)];

2
(
isterminal = zeros(1,2);

isterminal(1:2) = [1,1];

direction = zeros(1l,2); % direction unimportant

when the startit command is given to MATLAB, the code in the first file is
executed. The first section allows the user to set different rate constants and concen-
trations. The second section prepares the integration by constructing a vector of
starting conditions and setting the options. The third section executes the integra-
tion using the odel5s solver and calling simpleraft.m for a description of the dif-
ferential equations. When the integration is finished, the vector t contains the time
points of the integration and the corresponding rows in matrix x contain the concen-

trations for each of the six different species. The fourth section creates a basic
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output file containing all the data in ASCII format. Fully functional .m files can be
obtained from the author upon request. They may also be downloaded from the

author’s website (currently www.xs4all.nl/~engell3).

A.2.2. Exact Model

Construction

The second approach mentioned in the introduction uses a differential equation
for each individual chainlength for all species and several others for monomer, initi-
ator, etc. The following reaction scheme allows the required set of differential

equations to be derived.

species
d initiator I
I —~— 2P,
monomer M
2 radical P
+ M — P, dormant chain T
dead material D
k,
+ Tj EEE—— Pj + Ti rate constants
dissociation kq
propagation kp,
k, .
< D‘” combination K
+ Pj disproportionation Kig
k, Di + Dj transfer K,
initiator effcicency f
These then are as follows:
dl
— = —ky I (7-15)
dt
am k-M-P (7-16)
di b
dP " "
; =2fk,I - kp-PO-M— k. Py z TJ + kT z Pj
j=0 j=0 (7-17)
n n
— ki Py sz —kig Py ZPJ
ji=0 j=0
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dP; " "
; = kp'Pi_1'M_ kp-Pi-M— ktr-Pi-z T, + ktr-Ti-z P,
, J=0 j=0 (7-18)
— ke Py sz —kig P sz
j=0 j=0
dTi n n
; = ktr-Pi-z T, - ktr-Ti-z P, (7-19)
j=0 j=0
— = ke S PP+ ky P 3P (7-20)
j=0 j=0

the subscript i in the disributed species denotes the number of monomer units. Py is
therefore not a polymer radical, but a chemically different species derived from the
initiator or transfer agent. T — a dormant species without monomer units — is the
initial transfer agent. When n different chainlengths are considered, the total
number of differential equations equals 4n+1. Although the model is in principle
ideal for most of the living polymerizations in this thesis, it does not allow for com-
parison of the results with those of (simulated) polymerizations applying less

reactive transfer agents.

Besides, the transfer reaction cannot be unraveled further by the use of the full
addition—fragmentation equilibrium. The intermediate species has two chains
attached to the dithio moiety and the length of both needs to be remembered when it
is formed which would result in %2n? extra differential equations. For the example
given in the introduction this would result in an increase from 450 differential

equations to 11,700!

Implementation

Luckily, not all differential equations need to be hardcoded. For each of the
species, the differential equations for the various chain lengths are very similar and
they can be constructed programatically using a loop to iterate through all chain

lengths. Again two files are made:

the file run.m

clear all; % clear all variables in the Matlab environment
n = 80; % number of identifiable species
nr = (4*n)+4; % number of differential equations
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ktr = 6.5e3; % transfer rate constant

kp = 6.5e2; % propagation rate constant

kd = 7.4e-5; % dissociation rate constant

f = 0.6; % initiator efficiency

T = 5.9e-2; % initial transfer agent concentration

I = 2e-2; % initial initiator concentration

M = 3; % initial monomer concentration

maxci=0.999999; % stop integration at this conversion for initiator I
maxcm=0.999; % stop integration at this conversion for monomer M
maxpc=0.01; % max fraction of raft chains as undistinguishable species
tmax = le8; % alternate time of integration

F-mmmm———— section 2--------mmmmm o

% gather the required parameters

kvalue=[kd ktr kp f];

conc= [I M T];

maxc= [maxci maxcm maxpc];

yO0=zeros(1,nr) ;

y0(1:3)=conc;

F-—mmm———— section 3-------mmmmmm o
% construct a matrix e containing the chain length dependend

% termination rate coefficients

TERM=zeros ( (n+1), (n+l));
for i=1:(n+1)
for j=1:(n+1)
if (i<=85)
D1=3.1le-5/((i+1)"0.5);
else
D1=3.1e-5*(85%0.1)/((1+1)"0.6);
end % if i
if (j<=85)
D2=3.1e-5/((j+1)"0.5) ;
else
D2=3.1e-5*(8570.1)/((j+1)"0.6);
end % 1if 3
TERM(1,Jj)=5.58el3* (D1+D2) ;
end %$for jJ
end %for i
F-———= section 4--calculation------———=—----—————
[t,x]=o0del5s('raft', [],y0,[],kvalue,conc,maxc,n, TERM) ;

%$-----create output
%- -section 5-
fm fopen('main.dat', 'w'

ft = fopen('raft.dat', 'w');

fp = fopen('rad.dat','w');

F-———= section 6----create headers----------———————————~—~—~——
fst='time mc';

fsp='time mc';

for j = 0:n
fst=[fst ' t' num2str(j)];
fsp=[fsp ' p' num2str(j)];
end

fst=[fst ' \n'];
fsp=[fsp ' \n'];

fprintf (fm, 'time mc mono ini dead mnR mwR pdR mnD mwD pdD\n') ;

fprintf (ft, fst);

fprintf (fp, fsp) ;

F-———-- section 7----- MW averages--raft--—------—--—-—--—-————————— -

r=zeros (max(size(t)),6);
for i=1:max(size(t))

for j=0:n
r(i,1)=r(i,1)+x(i,3+3); % SUM N
r(i,2)=r(i,2)+(x(i,3+3)*(250+(j*104.15))); % SUM (N*M)
r(i,3)=r(i,3)+(x(i,3+3)*(250+(j*104.15))*(250+(3*104.15))); % SUM (N*M"2)
end
r(i,4)=r(i,2)/r(i,1); % number average molar mass Mn= SUM (N*M) /SUM (N)
r(i,5)=r(i,3)/r(i,2); % weight average molar mass Mw= SUM (N*M"2) /SUM(N*M)
r(i,6)=r(i,5)/r(i,4); % polydispersity index PD= Mw/Mn
end
&-————- section 8----MW averages--dead------—-——-——-———————— -~~~
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d=zeros (max(size(t)),6);
for i=l:max(size(t))
for j=0:((2*n)-1)

d(i,1)=d(i,1)+x(i,3+3); % SUM N
d(i,2)=a(i,2)+(x(1i,5+(2*n)+J) *(130+(3*104.15))); % SUM (N*M)
d(i,3)=d(i,3)+(x(1,5+(2*n)+3J) * (130+(j*104.15))* (130+(j*104.15))); % SUM (N*M"2)
end
d(i,4)=d4(i,2)/d(i,1); % number average molar mass Mn= SUM(N*M) /SUM(N)
d(i,5)=d(i,3)/d(i,2); % weight average molar mass Mw= SUM(N*M"2)/SUM (N*M)
d(i,6)=d(i,5)/d(i,4); % polydispersity index PD= Mw/Mn
end
§-—————- section 9----output----main--raft--rad--------—-—--------""""—-"—"—~—~——~——

for i=l:max(size(t)),
mc = ((M - x(i,2))/M)*100;
fprintf (fm, '%.4e %.4e %$.4e %.4e %.4e %.4e %.4e %.4e $.4e %.4e
%.4e\n',t(i),mc,x(i,2),x(i,1),x(1i, (2*n+5)),r(i,4),r(i,5),r(i,6),d(i,4),d(i,5),d(i,6))
fprintf (ft, '%.4e %.4e',t (1) ,mc);
fprintf (fp, '%.4e %.4e',t (1) ,mc);

for j = 0:(n-1)

fprintf (ft,' %.3e',x(1,3+3)); % loop raft species
fprintf (fp, ' %.3e',x(i,4+n+j)); % loop radical species
end
fprintf (ft,' %.3e \n',x(i,3+n)); % add final species of each series and add
fprintf(fp,' %.3e \n',x(i,4+n+n)); % an end-of-line character
end
%----section 10-- close files--------—————————————-
fclose(fm) ;
fclose(ft);
fclose(fp);
f—————= section 11----- the-dead-files----------—————————"——"—"—"—"—"—~~~
aantal=(2*n)-1; % aantal dode species
spf=200; % aantal species per file
bestand=fix(aantal/spf); % aantal files (max 200 species per file) minus 1
for i = O:bestand % loop door veschillende bestanden (waarde nul is 1
bestand)
naam=['dead' num2str(i) '.dat']; %maak filenaam aan
fd = fopen(naam, 'w'); %open file

if (i<bestand)

sif=spf; % sif is aantal bestanden in deze file alleen in de laatste
else % file is het kleiner dan spf

sif=aantal- (bestand*spf) ;
end %if
fsd='time mc'; % header aanmaken

for j = 0:(sif-1)
fsd=[fsd ' d' num2str(j+(i*spf))];
end % for jJ
fsd=[fsd ' \n'];
fprintf (£d, £sd) ;

for k=1l:max(size(t)), % tijden doorlopen
mc = ((M - x(k,2))/M)*100;
fprintf (fd, '%$.4e %.4e',t(k),mc); % conversie & tijd printen

for j = 0:(sif-2) % species doorlopen op 1 na
temp= x(k,5+(2*n)+j+ (i*spf));
if (temp<le-120) % prevent ultra-small numbers (unreadable by Origin)
temp=0;
end % if
fprintf (fd,' %.3e',temp); % loop dead species
end $for j
j=sif-1; % laatste species

temp = x(k,5+(2*n)+j+(i*spf));
if (temp<le-120)

temp=0;
end % if
fprintf (fd,' %.3e \n', temp);
end % for k
fclose(fd);
end $for i
&———-SeCtion 1 2-——MIW DS - = === === ==
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conv=[1l 2 5 10 15 20 25 30 40 50 60 70 80 90 95 96 97 98 99];
nummer=1;

wr=zeros(2,n) ; % gewicht raft (1 kolom absoluut/2 geschaald)
wd=zeros (2, (2*n-1)); % gewicht dood (1 kolom absoluut/2 geschaald)

for k=1l:max(size(t)), % tijden doorlopen
mc = ((M - x(k,2))/M)*100;

if (nummer>max (size (conv))),break, end % alle output files klaar

if (mc>conv(nummer) )
nummer =nummer + 1;

'r' num2str (conv(nummer-1)) '.dat'];
fopen(fn, 'w');

fn=[
fm =
for i = 0:(n-1)
wr (1, (i+1))=(250+(i*104)) ; % mw as
wr (2, (i+1))=x(k,3+1) * (250+(1*104)) ; % gewichts distributie
fprintf (fm, '$.3e %.3e \n', wr(l, (i+1)), wr(2, (i+1)));
end % for i

fclose (fm) ;
fn=['d' num2str (conv(nummer-1)) '.dat'];
fm = fopen(fn, 'w');

for i = 0:(2*n-1)
wd (1, (i+1))=(130+(i*104)) ; % mw as

wd (2, (i+1))=x(k,5+(2*n)+1)* (130+(1i*104)); % gewichts distributie

fprintf (fm, '$.3e %.3e \n', wd(1l, (i+1)), wd(2, (i+1)));
end % for i
fclose (fm) ;
end % if
end % for k

clear all;

and the file raft.m

function varargout = raft(t,y,flag,a,b,c,d,e)

switch flag

case "' % Return dy/dt = f(t,y)
varargout{1l} = f(t,y,a,b,c,d, e);

case 'init' % Return default [tspan,y0,options]
[varargout{1:3}] = init(a,b,c,d,e);

case 'events' % Return [value, isterminal,direction]
[varargout{1l:3}] = events(t,y,a,b,c,d,e);

otherwise
error (['Unknown flag ''' flag '''.']);

end

§ ———m———m— Fommm o B

% conc. in time |k-values |conc. t=0 | max conversions

§ ———m—— - Fommm o B

%I y (1) kd a(l) I0 b(l) max.conv. I c(1)

SM y(2) ktr a(2) MO Db(2) max.conv. M c(2)

$TO0 y(3) kp a(3) T0O b(3) max. long raft c(3)

$Tn  y(3+d) £ a(4)

%P0y (4+d)

$Pn  y(4+24)
$D0  y(5+2d)
$D2n y (4+44)

% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

$number of species d

%kt matrix e

% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
function dydt = f(t,y,a,b,c,d, e)
no = (4*d)+4; % number of differential equations
dydt=zeros (no, 1) ; % define output column vector
rad=sum(y ( (4+d) : (4+2*d))) % total radical concentration
raft=sum(y (3:(3+d))); % total raft concentration

% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

% calculate the average radical chain length

av=0;
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for 1 = 0:d % for all chain lengths
av=av+ (y(4+d+i) *i); % summarize concentration * length
end
if (rad<=0) % avoid error right at the
av=0; % start of integration
else
av=fix(av/rad) %average radical chainlength
end

% construct differential equations

dydt (1) = -a(l)*y(1); % initiator decay
dydt(2) = -a(3)*y(2)*rad; % monomer consumption
for 1 = 0:d % dormant species & radicals

dydt (3+1)= a(2)*y(4+d+1i)*raft-a(2)*y(3+1i)*rad;
dydt (4+d+1)=-a(3)*y (4+d+1) *y(2)-a(2) *y (4+d+1i) *raft+a(2) *y (3+1) *rad
-e((av+l), (i+1))*y(4+d+i) *rad;

end
for i = 1:(d) % radicals

dydt (4+d+1) =dydt (4+d+1i)+(a(3) *y(2) *y (3+d+1i)) ;
end

% initiator contribution to PO
dydt (4+d) =dydt (4+d) +(2*a (1) *a (4) *y (1)) ;

% cancel propagation for Pn
dydt (4+2*d) =dydt (4+2*d) + (a(3) *y (4+2*d) *y (2)) ;

% dead species--------——————- -
% chain length dead material

% loop different combinations to form dead species
% length radical 1

% length radical 2

dydt (5+(2*d) +1)=dydt (5+(2*d) +1) +e ((rl+l), (r2+1)) *y (4+d+rl) *y (4+d+r2) ;

end
end
for i=d:(2*(d-1)) % chain length dead material
for j=fix(i/2):-1:0 % loop different combinations to form dead species
rl=i-j; % length radical 1
r2=j; % length radical 2
if (rl>(d-1))|(r2>(d-1)),break,end % non existing radical length
dydt (5+(2*d) +1)=dydt (5+(2*d) +1) +e ((rl+l), (r2+1)) *y (4+d+rl) *y (4+d+r2) ;
end
end

dydt (4+4*d)=e (d,d) *y (4+2*d) *y (4+2*d) ;

% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
function [tspan,y0,options] = init(a,b,c,d,e)

tspan = [0 le8]; % default timespan

nr = (4*d)+5; % number of differential equations/compounds

v0 = zeros(l,nr); % starting concentrations

y0(1:3) = b(1:3);
options =odeset('AbsTol',le-7, 'RelTol',le-7, 'BDF', 'off','Stats','on', 'Events', 'on');
% error tolerances

function [value,isterminal,direction] = events(t,y,a,b,c,d, e)

% b(l)= concentration I at t=0, b(2)= concentration M at t=0

% y(1l)= concentration I at t=t, vy(2)= concentration M at t=t

% c(1)= maximum conversion of I, c(2)= maximum conversion of M

% abort integration when one of both components reaches max. conversion

% second criterium: integrating noise, [radicals]<O0
% third criterium: heap of non-distinguisable species > 1%

value = zeros(1l,d+4); % max conversion=zero crossing
value(1:2) = [((b(1)-y(1))/b(1))-c(1), ((b(2)-y(2))/b(2))-c(2)];

for i =0:d

value (i+3) = y(4+d(1)+1i); % [radicall<0
end
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value(1l,d+4)= (y(d+3)/b(3))-c(3); % third criterium
isterminal = zeros(1l,d+4);

isterminal (1:2) = [1,1];

isterminal (d+4) =[1]; % all are terminal events
direction = zeros(1l,d+4); % direction unimportant

The files are for a large part self explanetory. Comments can be found inline
with the code. The same general structure is applied as in the previous model.
run.m collects and prepares the input parameters, calls the odel5s solver which
uses the differential equations in raft.m, and produces several output files from the
raw integration results. raft.dat, rad.dat and deadX.dat (X being an integer)
contain the concentrations of each and every species in time. Main.dat contains the
molar mass averages, polydispersities and conversion as a function of time. Section
12 generates a number of molar mass distributions at the conversions specified in
the conv vector. For every point both an rX.dat and dX.dat (X being the conver-
sion) file are created containing the molar mass distribution of the dormant chains

and of the dead material respectively.

The raft.m file illustrates the use of events. As only a limited number of
chain lengths is considered the model will need to check during the integration
whether or not this number still suffices. If any material grows to larger chain
lengths, the model needs to terminate. This can be achived by removal of the
positive contribution of propagation from the largest radical species (in its differen-
tial equation). This prevents polymer ‘growing out of the model’. The largest
radical species P, not only represents polymer radicals with length n, but cumilates
all longer chains as well. In every iteration the model checks the concentration of P,
and as soon as it amounts to more then 1% of the total radical concentration, the
integration is halted. Events are constructed in such a way that they represent a
certain zero-crossing. The actual percentage of P, is substracted from 1 so that the
event-value evaluates to zero and is recognised by MATLAB. Reaching the
maximum conversion for either initiator or monomer and negative radical concen-
trations also trigger events that halt the integration because they indicate that the
polymerization is essentially finished and that further integration will yield mean-

ingless results.

A.2.3. The Method of Moments

The third model discussed in the introduction aims to keep track of the molar
mass averages of a distribution rather than the full distribution itself which, as

shown in the previous section, is not possible for a lot of systems. The computa-
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tional power released by this simplification can be employed to tackle more
demanding polymerizations. The derivation of the differential equations from the
reaction scheme is in this case slightly more complicated. The same reaction
scheme is used as for the exact model to arrive at the following differential

equations for the individual species:

dl
— =k, (7-21)
dt
M
— = —k;M-P (7-22)
dt
dP, ~ ~
; = 2fky-1-k, - Py-M—k, - Py sz"'ktr'To' ZPJ-
o wl=0 j=0 (7-23)
—kie Py sz_ktd'PO' sz
j=0 j=0
dP; “ “
; =k, M-(P,_y—P)-k, P sz"'ktr'Ti' ZPJ'
- J=0 j=0 (7-24)
—kye Py sz_ktd'Pi' sz
j=0 j=0
dT, ~ ~
;=k”.p0.27}_k".7~0.21)j (7-25)
j=1 j=1
dT; ~ ~
;=ktr'Pi'sz‘ktr'Ti'sz (7-26)
j=0 j=0
dp, i -
; =k, sz'Pi—j"‘ktd'Pi' ZPJ. (7-27)
j=0 j=0

The differential equations for the initiator and the monomer can be used
directly in the model. Note that Py and T are treated seperately and have been
taken out of their distribution. This affects only the zeroth moment of the distribu-

tion as for the higher moments the contribution of the individual species is multi-
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du,
dt

du,
dt

du,
dt

plied with its index (see formula 7-1) which cancels out the zero-length species.
Before these equations can be put in the model they need to be rewritten so that

they are expressed in moments:

dP T P
— = 2kg 1=k, Po-M—k, Py Ug+k, Ty Ko
dt (7-28)

—(kye + kpg) - Po - (P + 1)

dT, T P
;=kn'Po'Ho‘k:r'To'Ho (7-29)

The equations for P;, T, and D; are used to derive the respective differential
equations for the moments of these distributions. The differential equation for the
zeroth moment of the radical distribution follows from summation over all i from 1

to infinity:

dy P,
i =1
’d— =k, M- Z(Pi_l—Pi)—ktr-[To+ ST Y P+
t
i=1 j=1 " =1 (7-30)

oo

ktr.[P0+ ZPJ-]- zTi_(ktc+ktd)'[P0+ ZP,-]- 2P

j=1 i=1 j=1 i=1

P T T P PP
kyM-Poy = kb (To+Ho) + k2o @g + 1) = (Kt k) (Po+ig) Mo (7-31)

T P P, P
kyM-Py + ki Pytg =k, Tolg = (kietkg) (Potig) Ko (7-32)

Keeping in mind that the zeroth moment is in fact the total concentration of
polymeric radicals, the correctness of the obtained differential equation can easily
be rationalized. There are positive contributions from initiator derived radicals that
‘propagate into the distribution’ as well as from dormant polymer chains that
become activated by such a radical. Negative contributions result from both termi-
nation and the reaction between transfer agent and a propagating species which

generates a P instead of a P; radical.
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The same technique will be used to arrive at the differential equations for the

first and the second moment although for these cases the result takes a more
abstract form:
d z i-P;

P oo

M i =k M-S i-(P.  —P)—k

a a7 'Zl"( i-1=P) =k,
i=

[TO+ ZTJ]- 3P,
j=1 " =1 (7-33)

oo oo

m [P0+2Pj]-§i-Pi

+k:r'[Po+ ZPJ. . Zi-Ti—(ktd+ktc)-

i=1

j=1 i=1 j=1
P
du, P T, P Py T
— =k, M- (Po+ o) =k (To+Ro) - Wy + ko (Po+ o) - 1y
dt (7-34)

~ (kyg+ k) - (P + 1) 1y

and the second moment

2
p dzl 'Pz . . .
duy B 2 2
;—T—kP'M'zl'(Pi_l—Pi)—ktr' T0+2Tj'zl'Pi
i=1 j=1 i=1 (7-35)
2 2
+ktr'[P0+ ZPJ ' Z’ 'Ti_(ktd+ktc)'[P0+ ZPJ]' Z’ P
i=1 i=1 ji=1 i=1
P
dy, P P T, P P, T
— = kM- (Pt g +20y) =k, (To+Ro) My + ke (Potig) My
di (7-36)

— (kg ko) (Po+ 1)1t

The moments for the dormant species are derived as follows:
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zeroth moment:

Ay T,

dug = o o0 o0 o (7-37)
;= 0 =k, |Ty+ ZTJ 'sz’_krr' Py+ ZPJ- -ZTi
j=1 i=1 ji=1 i=1
T
dpg T, P P, T
n = ki (To+ Ko) - Ko =k, - (Po+Ko) - Ko (7-38)

first moment:

Ay i-T,
d E l I R - = (7-39)
— ==k, [Ty ST i Pk, [Py SRS 0T,

dt dt
j=1 i=1 j=1 i=1
T
dp, T. P P, T
n = ky - (To+Ho) - Wy =k, (Po+ o) - 1y (7-40)

second moment:

4y i’ T,

duy T > - > © ., (1-41)
— = = kT DT Y Pk Pt B YT,
j=1 i=1 j=1 i=1
T
d“2 T P P T
A ki (To+ Ro) Ky =k (Pt o) - 1y (7-42)

for the dead chains:

dyg 20 -
7:) = % =k DD P Ptk 3P Y UP

i=0j=0 i=0 j=0

o

(7-43)
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in which the contribution from disproportionation can readily be expressed in
moments. Rewriting the contribution from combination requires the use of the

following identity:

D X flkn)y =% N flkn) = 3 ¥ flkntk) (7-44)

n=0k=0 k=0n=k n=0k=0

the first step can be visualized if we consider a three dimensional space:

q

X

the middle illustration shows which area on the base, the nk-plane, is covered by the
first summation. The same area is covered by the second summation. Here k runs
from zero to infinity while »n runs from the current £ value to infinity. When in this
summation, n is replaced by the new running variable n+k, the summation takes its
final form. If this identity is applied to equation 7-43 , it can be expressed in the

moments of the radical distribution.

D 0 oo oo oo
du,
?=ktC-ZZPj-Pi+ktd-2Pi-2Pj (7-45)
i=0j=0 i=0  j=0
D
du, P
— = ket ki) Pyt y) (7-46)

the same identity is used in the derivation of the first and the second moment:

b dyi-D;
du _ <! ~ ~
d_tl = % =k, - z zi'Pj'Pi—j+ktd' zl‘.pi. ZPJ
i=0j=0 i=0 j=0

(7-47)
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D -
Rl i +j) PPkl (Py+uh
o e 2 > )PPtk by (Pt 1) (7-48)
i=0j=0
D
dpy P P
— = (kg 2k 1y - (Pt 1) (7-49)
dt
diiz-p.
R SN )
=2k SN P Ptk S PSP
dt dt
i=0j=0 i=0 j=0
D -
duy .2 P P
;—ktc'ZZ(H‘J) PPtk Wy - (Po+lg) (7-51)
i=0j=0
duD
2 P P P2
— = (gt 2 kg) by (Po+ )+ 2 e (1) 752

now that the appropiate differential equations have been derived, they can be put in
a MATLAB .m file similar to the other models. The output matrix contains the
evolution of the moments in time from which the molar mass averages and the poly-

dispersity can be calculated according to equations 7-2 and 7-3.

klr
+ T_] _— Q(l_]) P T k,
. i+ — Quyy)
frag Pi + Tj] kf
rag
Q) < Qivy —> P+ T,
J 1 .o — 5
Qiwp + P Diisjo
kf
Q(i,j) + k > D(i+j+k)
schemel scheme?2

To develop the model further it would be desirable to use the full addi-
tion—fragmentation equilibrium and to investigate the intermediate radical as well.
As mentioned in the previous model, the intermediate radical has a double distribu-
tion and the length of both chains attached to the dithiocarbonate moitey needs to
be known (Scheme 1). Treatment of such a ‘two dimensional’ compound is impos-
sible with the method of moments. When the intermediate is simplified to a one

dimensional species, the length of the individual chains that are regenerated upon
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k,
P1 + Tj EE— Qi + Qj

L k, .

Ql frag Pl Ql + Pk _— D(l+k)
k * K

Q —™» T Qj + Dy Disjan
k, D

Q+Q+P —— (i+j+k)
scheme 3 scheme 4

fragmentation is not known (Scheme 2). This approach is therefore rejected. A
good alternative is the physically unrealisic scheme where the transfer reaction
generates two polymer chains (Scheme 3). The reaction is mathematically identical
to termination by disproportionation and can easily be described using the moments
method. Fragmentation then can be described as a unimolecular transition to either
a dormant or a radical species. The concentration dependencies of the rate (frag-
mentation being first order in the concentration of the intermediate) are maintained
in the original state. The consequences of this unrealistic simulation are a faulty
concentration of the intermediate species. This can be corrected as the difference is
a factor of two. Calculating the average molar mass will also yield erroneous
results, but these data are not of particular interest anyway. More important is the
molar mass of the termination product formed in the reaction between the interme-
diate species and a propagating radical. To arrive at the correct molar mass, this will

need to be a trimolecular reaction using two intermediate species and a radical.

When the model is transformed into differential equations, the correct rate
structure will be lost. The rate of the last termination reaction, that of the intermedi-
ate radical will increase by a factor of four when the concentration of the intermedi-
ate radical doubles. The correct rate structure can be restored (first order in both
intermediate and radical concentration) when substituting the last reaction in
Scheme 3 with the two reactions in Scheme 4 allows the complete scheme to be
expressed in differential equations, maintaining correct reaction rates and allowing
the predication of all molar mass averages. However the prerequisite that the second
reaction of Scheme 4 be much faster than the first (in other words, the first reaction
is the rate determining step) makes the entire matrix of differential equations close
to singular and leads to an extremely stiff system which cannot be solved anymore.
The integrator will be required to make extremely small steps on the entire
timescale solely because of this reaction. Up to now, no method was found to cir-

cumvent this problem.
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A.3. Monte Carlo Simulations

Monte Carlo simulations are based on the element of chance. They do not
require the chemical reactions to be transformed into a mathematical model of dif-
ferential equations, but instead make use of probability functions and random
numbers. The model used to investigate the effect of the transfer coefficient and the
targeted degree of polymerization on the polydispersity of the final product requires
four input parameters, in its current implementation: amount of monomer, amount
of RAFT agent, the transfer rate coefficient and the propagation rate coefficient. Of
the latter two, only their ratio is of importance, reducing the number of actual
parameters to three. The simulation neglects termination events and physicalle cor-
responds to a polymerization with one single radical. One of the RAFT agents is
randomly chosen to be the active species. Monomer species are added one by one to
the active species. Before each addition occurs, the chance of transfer is calculated
using Eq. 7-53:

k,.- RAFT

P(transfer) = (7-53)
k.- RAFT +k,-M

P(transfer) is compared with a random value between 0 and 1 and if transfer
occurs, a new, randomly chosen, species from the population is set to be active. The
ratio of monomer to raft agent determines the target degree of polymerization, one
of the experimental parameters, while the magnitude of the individual species deter-
mines the statistical variation. Larger populations of monomer and RAFT, but in the

same ratio, will produce more consistent results.

A.4. References
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